102 research outputs found

    A Parallel Elastic Haptic Thimble for Wide Bandwidth Cutaneous Feedback.

    Get PDF
    Design of wearable fingertip haptic devices is often a compromise between conflicting features: lightness and compactness, against rich and neat haptic feedback. On one side direct drive actuators (i.e. voice coils) provide a clean haptic feedback with high dynamics, with limited maximum output forces. On the other side mechanical transmissions with reduction can increase output force of micro sized motors, at the cost of slower and often noisy output signals. In this work we present a compact fingertip haptic device based on a parallel elastic mechanism: it merges the output of two differently designed actuators in a single, wide bandwidth haptic feedback. Each actuator is designed with a different role: one for rendering fast, high frequency force components, the other for rendering constant to low frequency components. In the work we present design and implementation of the device, followed by experimental characterization of its performance in terms of frequency response and rendering capabilities

    Haptic-Based Shared-Control Methods for a Dual-Arm System

    Get PDF
    We propose novel haptic guidance methods for a dual-arm telerobotic manipulation system, which are able to deal with several different constraints, such as collisions, joint limits, and singularities. We combine the haptic guidance with shared-control algorithms for autonomous orientation control and collision avoidance meant to further simplify the execution of grasping tasks. The stability of the overall system in various control modalities is presented and analyzed via passivity arguments. In addition, a human subject study is carried out to assess the effectiveness and applicability of the proposed control approaches both in simulated and real scenarios. Results show that the proposed haptic-enabled shared-control methods significantly improve the performance of grasping tasks with respect to the use of classic teleoperation with neither haptic guidance nor shared control

    Rendering of Pressure and Textures Using Wearable Haptics in Immersive VR Environments

    Get PDF
    Haptic systems have only recently started to be designed with wearability in mind. Compact, unobtrusive, inexpensive, easy-to-wear, and lightweight haptic devices enable researchers to provide compelling touch sensations to multiple parts of the body, significantly increasing the applicability of haptics in many fields, such as robotics, rehabilitation, gaming, and immersive systems. In this respect, wearable haptics has a great potential in the fields of virtual and augmented reality. Being able to touch virtual objects in a wearable and unobtrusive way may indeed open new exciting avenues for the fields of haptics and VR. This work presents a novel wearable haptic system for immersive virtual reality experiences. It conveys the sensation of touching objects made of different materials, rendering pressure and texture stimuli through a moving platform and a vibrotactile abbrv-doi-hyperref-narrowmotor. The device is composed of two platforms: one placed on the nail side of the finger and one in contact with the finger pad, connected by three cables. One small servomotor controls the length of the cables, moving the platform towards or away from the fingertip. One voice coil actuator, embedded in the platform, provides vibrotactile stimuli to the user

    A robotic microsurgical forceps for transoral laser microsurgery

    Get PDF
    Purpose: In transoral laser microsurgery (TLM), the close curved cylindrical structure of the laryngeal region offers functional challenges to surgeons who operate on its malignancies with rigid, single degree-of-freedom (DOF) forceps. These challenges include surgeon hand tremors, poor reachability, poor tissue surface perception, and reduced ergonomy in design. The integrated robotic microsurgical forceps presented here is capable of addressing the above challenges through tele-operated tissue manipulation in TLM. Methods: The proposed device is designed in compliance with the spatial constraints in TLM. It incorporates a novel 2-DOF motorized microsurgical forceps end-effector, which is integrated with a commercial 6-DOF serial robotic manipulator. The integrated device is tele-operated through the haptic master interface, Omega.7. The device is augmented with a force sensor to measure tissue gripping force. The device is called RMF-2F, i.e. robotic microsurgical forceps with 2-DOF end-effector and force sensing. RMF-2F is evaluated through validation trials and pick-n-place experiments with subjects. Furthermore, the device is trialled with expert surgeons through preliminary tasks in a simulated surgical scenario. Results: RMF-2F shows a motion tracking error of less than 400 μm. User trials demonstrate the device’s accuracy in task completion and ease of manoeuvrability using the Omega.7 through improved trajectory following and execution times. The tissue gripping force shows better regulation with haptic feedback (1.624 N) than without haptic feedback (2.116 N). Surgeons positively evaluated the device with appreciation for improved access in the larynx and gripping force feedback. Conclusions: RMF-2F offers an ergonomic and intuitive interface for intraoperative tissue manipulation in TLM. The device performance, usability, and haptic feedback capability were positively evaluated by users as well as expert surgeons. RMF-2F introduces the benefits of robotic teleoperation including, (i) overcoming hand tremors and wrist excursions, (ii) improved reachability and accuracy, and (iii) tissue gripping feedback for safe tissue manipulation

    Implementation and Characterization of Vibrotactile Interfaces

    Get PDF
    While a standard approach is more or less established for rendering basic vibratory cues in consumer electronics, the implementation of advanced vibrotactile feedback still requires designers and engineers to solve a number of technical issues. Several off-the-shelf vibration actuators are currently available, having different characteristics and limitations that should be considered in the design process. We suggest an iterative approach to design in which vibrotactile interfaces are validated by testing their accuracy in rendering vibratory cues and in measuring input gestures. Several examples of prototype interfaces yielding audio-haptic feedback are described, ranging from open-ended devices to musical interfaces, addressing their design and the characterization of their vibratory output

    Immersive technology and medical visualisation: a user's guide

    Get PDF
    The immersive technologies of Virtual and Augmented Reality offer a new medium for visualisation. Where previous technologies allowed us only two-dimensional representations, constrained by a surface or a screen, these new immersive technologies will soon allow us to experience three dimensional environments that can occupy our entire field of view. This is a technological breakthrough for any field that requires visualisation, and in this chapter I explore the implications for medical visualisation in the near-to-medium future. First, I introduce Virtual Reality and Augmented Reality respectively, and identify the essential characteristics, and current state-of-the-art, for each. I will then survey some prominent applications already in-use within the medical field, and suggest potential use cases that remain under-explored. Finally, I will offer practical advice for those seeking to exploit these new tools

    Bright light therapy in pregnant women with major depressive disorder: Study protocol for a randomized, double-blind, controlled clinical trial

    Get PDF
    Background: Depression during pregnancy is a common and high impact disease. Generally, 5-10 % of pregnant women suffer from depression. Children who have been exposed to maternal depression during pregnancy have a higher risk of adverse birth outcomes and more often show cognitive, emotional and behavioural problems. Therefore, early detection and treatment of antepartum depression is necessary. Both psychotherapy and antidepressant medication, first choice treatments in a non-pregnant population, have limitations in treating depression during pregnancy. Therefore, it is urgent and relevant to investigate alternative treatments for antepartum depression. Bright light therapy (BLT) is a promising treatment for pregnant women with depressive disorder, for it combines direct availability, sufficient efficacy, low costs and high safety, taking the safety for the unborn child into account as well. Methods: In this study, 150 pregnant women (12-18 weeks pregnant) with a DSM-V diagnosis of depressive disorder will be randomly allocated in a 1:1 ratio to one of the two treatment arms: treatment with BLT (9.000 lux) or treatment with dim red light therapy (100 lux). Both groups will be treated for 6 weeks at home on a daily basis for 30 min, within 30 min of habitual wake-up time. Follow-up will take place after 6 weeks of therapy, 3 and 10 weeks after end of therapy, at birth and 2, 6 and 18 months postpartum. Primary outcome will be the average change in depressive symptoms between the two groups, as measured by the Structured Interview Guide for the Hamilton Depression Scale - Seasonal Affective Disorder version and the Edinburg Postnatal Depression Scale. Changes in rating scale scores of these questionnaires over time will be analysed using generalized linear mixed models. Secondary outcomes will be the changes in maternal cortisol and melatonin levels, in maternal sleep quality and gestational age, birth weight, infant behaviour, infant cortisol exposure and infant cortisol stress response. Discussion: If BLT reduces depressive symptoms in pregnant women, it will provide a safe, cheap, non-pharmacological and efficacious alternative treatment for psychotherapy and antidepressant medication in treating antepartum depression, without any expected adverse reactions for the unborn child. Trial registration: Netherlands Trial Register NTR5476. Registered 5 November 2015

    Nutritional therapies for mental disorders

    Get PDF
    According to the Diagnostic and Statistical Manual of Mental Disorders, 4 out of the 10 leading causes of disability in the US and other developed countries are mental disorders. Major depression, bipolar disorder, schizophrenia, and obsessive compulsive disorder (OCD) are among the most common mental disorders that currently plague numerous countries and have varying incidence rates from 26 percent in America to 4 percent in China. Though some of this difference may be attributable to the manner in which individual healthcare providers diagnose mental disorders, this noticeable distribution can be also explained by studies which show that a lack of certain dietary nutrients contribute to the development of mental disorders. Notably, essential vitamins, minerals, and omega-3 fatty acids are often deficient in the general population in America and other developed countries; and are exceptionally deficient in patients suffering from mental disorders. Studies have shown that daily supplements of vital nutrients often effectively reduce patients' symptoms. Supplements that contain amino acids also reduce symptoms, because they are converted to neurotransmitters that alleviate depression and other mental disorders. Based on emerging scientific evidence, this form of nutritional supplement treatment may be appropriate for controlling major depression, bipolar disorder, schizophrenia and anxiety disorders, eating disorders, attention deficit disorder/attention deficit hyperactivity disorder (ADD/ADHD), addiction, and autism. The aim of this manuscript is to emphasize which dietary supplements can aid the treatment of the four most common mental disorders currently affecting America and other developed countries: major depression, bipolar disorder, schizophrenia, and obsessive compulsive disorder (OCD)

    The HapBand: A Cutaneous Device for Remote Tactile Interaction

    No full text
    In this work we present a novel haptic device that applies cutaneous force feedback to the forearm. We called it HapBand. It is composed of three moving plates, whose action on the forearm resembles the squeeze of a human hand. In order to validate the device, we carried out an experiment of remote tactile interaction. A glove, instrumented with five force sensors, registered the contact forces at the remote site, while the HapBand mimicked the registered sensation to the user’s forearm. Results showed the HapBand to well resemble the squeezing sensation on the forearm
    • …
    corecore